
Modern Game Console Exploitation

Eric DeBusschere, Mike McCambridge

March 26, 2012

Console Security Overview

Most modern consoles acheive complete software security by only running
signed code, encrypting memory, and utilizing firmware updates to patch
vulnerabilities.

Although hardware security is more expensive, modern consoles use secure
boot as well as a chain of trust seeded by a unique hardware console key.

The Xbox 360 and PS3 go further:

The PS3 utilizes isolated SPUs

The Xbox 360 uses hardware eFuses to prevent downgrading

Console Security Overview - Internet Protection

The best modern protection is via the internet and updates:

Firmware Updates

Internet Banning

Requiring users to have an updated console to play new games

These practices force users to choose between an exploited console and a
complete gaming experience

Console Security Overview - Graphic

Exploitation Strategies Overview

Software exploitation is generally done through memory overflows or unchecked
parameters

Hardware attacks usually use either a timing or glitch attack as the entry point

Exploitation Strategies Overview

Attacks build off of each other. Examples:

Using a Glitch attack to dump the hypervisor and expose software bugs.

Using a timing attack to downgrade to an exploitable kernel.

After a software vulnerability is discovered and patched, downgrading becomes
a viable exploitation strategy.

XBOX 360 - Software Security

Operating System only runs signed code.

No unencrypted, executable code is written to memory.

Prevents memory snooping

All vulnerabilities are patched whenever a console connects to XBOX Live and
downloads the latest update.

All new console’s are sold with latest security updates.

XBOX 360 - Hardware Security

Due to cost, Xbox 360 is more vulnerable to hardware attacks.

360 contains 768 bits of eFuse, a technology by IBM

Main Purpose is to prevent downgrading by flashing older kernel

Blown whenever a kernel update is performed in clusters of 8 (hex val)

Value use along with CPU key to sign and verify firmware software

Tightly controlled boot process

XBOX 360 - Fusesets

Fuseset Purpose

00 and 01 Retail or Dev console

02 Lockdown counter for 2BL/CB-the
bootloader.

03-06 Defines the CPU key, set at factory

07-12 Lockdown counter for 4BL (Kernel)

XBOX 360 - Secure Boot

Bootloader Purpose

1BL Reads the 2BL code from NAND-Flash and decrypts
it into the CPUs SRAM.

2BL Verifies itself with eFuse. Initializes PCI-Bridge, dis-
ables JTAG test port, and initializes memory encryp-
tion. Decrypts the 4BL into memory.

4BL Checks and unpacks the 5BL, applys update patches.
Determines update sequence from eFuses.

5BL Merges the Hypervisor and Kernel into a single im-
age.

6BL/7BL Updates kernel from base kernel using delta com-
pression.

Custom Firmware for DVD-ROM

Almost immediately, hackers discovered that simply writing custom firmware
for the DVD-ROM drives used in Xbox 360s allowed them to play copied games

The content of the disc must be identical, otherwise the signature will not
remain intact.

Not very interesting to users interested in running Linux.

King Kong Exploit - Kernel 4532/4538

Games, specifically King Kong, can write the results of pixel shaders directly
into memory

These writes are checked by the Hypervisor, but Kernel 4532/4538 contained a
critical error which allowed the upper 32 bits of memory to be set through a
pixel shader.

In the code below, the input address was (inadvertently) cast to 32 bits to
check, but used in its full 64 bit form in execution.

Code:

syscall (uint64 inputAddress) {

if ((uint32)inputAddress > checkVal)
illegal call;

....
}

King Kong Exploit - Using Hardware Only

KK Attack requires a user start their console using the King Kong disc
everytime they want to enter the exploited state.

Because the attack is a DMA, in theory any software/hardware that has
authorization to perform a DMA could be used to trigger it.

It did not take long for hackers to discover a purely hardware based attack.

King Kong Exploit - JTAG

A hardware group called the
JTAG point was reverse
engineered

This allowed hackers to set
DMA Addresses

The JTAG could not be used to
trigger a DMA because it is
disabled early in the boot
process

Figure 1: Setting DMA Target Address

through JTAG point.

King Kong Exploit - SMC

The SMC port could launch a
DMA, but could not set the
target DMA addresses

Together, however, the
JTAG/SMC could trigger a
controlled DMA

Figure 2: Using SMC to trigger DMA.

King Kong Exploit - Hardware Triggered DMA

The DMA loads the neccessary
memory addresses and initiates
the attack.

The two neccessary memory
jumps are performed, and the
exploit is complete.

Figure 3: The exploit allows jumping into

any 32-bit address in the hypervisor’s

address space.

King Kong Exploit - Full Hardware Exploit

Zero Pairing and MfgBootLauncher

In Summer 07, MfgBootLauncher mode was discovered.

The 2BL has an information header which includes a pairing block

When this pairing block is all 0s, MfgBootLauncher mode is entered

MfgBootLauncher does nothing, but Microsoft didn’t like it so they made
several changes via a firmware update:

Decrypting the 4BL now requires the CPU-Key

MfgBootLauncher mode allows a user to bypass the eFuses

Chicken and Egg Scenario

This presented a chicken and egg scenario for Xbox 360 hackers

If you know your CPU Key, you can downgrade to an exploitable kernel

But to get your CPU key, you need to run an exploitable kernel

Figure 4: The chicken and egg in the scenario

Xbox 360 - Timing Attack

Hackers took an unmodified base kernel and patched it with values in the
current kernel.

Now, they only had to get it past the 4BL Hash Check, which was much easier
than finding a console’s CPU Key.

Essentially, they shifted the problem of finding a console’s CPU-Key to the
easier problem of getting an unsigned kernel past the Hash Check.

The Hash Check was done using a memcmp function over a 16 byte value.

A difference of 2200 microseconds was found between True and False
Values

Queue timing attack!

Xbox 360 - Unexploitable

After the timing attack, the Xbox 360 went three years without a major exploit

A small exploit allowed consoles up to Summer 09 to run timing attack

Xbox 360 - Reset Glitch

Most in the community thought a glitch attack would be too difficult/expensive

One hacker, GliGli, became desparate enough to try, and succeeded!

Fat consoles are easy to glitch

Asserting CPU-PLL-BYPASS signal slows CPU execution down 128x.

Xbox 360 - Reset Glitch on Slims

The CPU-PLL-BYPASS could not be asserted on Slims

Slim consoles have their CB split into two: CB-A and CB-B

Asserting CPU-RESET on the HANA chip allowed a patched CB-B to sidestep
validation

Attackers derived a patched CB-B by building off of exploited Fat console
CBs.

Slim CB-B is protected with RC4 Stream encryption

Hackers guessed that the first few bytes would be the same

Dumped CPU key and signed patched CB-B

Xbox 360 - Complete Timeline

PlayStation 3 - Security

Runs a layered Operating System: Kernel mode, User Mode, Hypervisor Mode

Software security is similar to the Xbox 360

Signed Executables

Encrypted Memory

Firmware Updates

New Games require the latest updates

Hardware Security Differences

Does not use eFuses - Downgrading is easier than 360

Runs isolated SPEs: Synergistic Processing Elements

PlayStation 3 - Security Intact

The PlayStation 3 remained completely unexploited for more than three years

Speculators believe this was because Sony supported Linux through OtherOS
until 2010

GeoHot Dumps Hypervisor

GeoHot, a 21 year old hacker famous for his iPhone exploits, initiated the first
successful attack against the PS3 in early 2010.

The entry point is OtherOS, Sony’s tool to run Linux

OtherOS has to ask the Hypervisor for page table mappings to access memory.

GeoHot Dumps Hypervisor

GeoHot had OtherOS allocate a sizable buffer and ask for a large number of
mappings.

Then, the buffer was deallocated without properly removing the mappings.

Normally, the hypervisor would just deallocate all the mappings.

However, glitching the memory bus as these deallocations occured caused
some mappings to remain intact, allowing GeoHot direct memory access.

PS Jailbreak

The first exploit that allowed a user to play backup games stored on the hard
drive

Utilizes a USB device verification bug to trigger a heap overflow and inject
unsigned code

Only compromises the lowest level of the Operating System, and allows a user
to play pirated games but not run Linux.

Initially made available for $100 to $130, though it was quickly reverse
engineered.

PS Jailbreak - Step 1

The exploit masquerades as a USB Hub

First, it “plugs in” three USB devices with large descriptors

Then, device 2 is unplugged, but its payload remains.

PS Jailbreak - Step 2

A device containing 3 descriptors is plugged into port 4

The PS3 reads the size of each descriptor in order to allocate the neccessary
memory

The allocated memory is between Device 1 and Device 3’s descriptors.

When Device 4’s descriptors are actually read, the exploit changes the size of
descriptor 2 to 0 bytes

This causes the PS3 to parse the payload injected in step 1, which contains a
descriptor much larger than the space allocated, overflowing the buffer.

PS Jailbreak - Step 3

The overflow overwrites the malloc boundary tag, and points it to a function
called after USB devices are freed.

Next, the exploit plugs a device into port 5, posing as an official PS3 service Jig

The PS3 sends a challenge, and the device responds with static data which is
stored in memory, thus overwriting the function called after USB devices are
freed.

Then, the exploit simply unplugs one of the devices, and the unsigned code is
called!

Fail0verflow

On Jan. 7th, 2011, team Fail0verflow, building off of GeoHot’s dump of the
Hypervisor and the PS Jailbreak exploit, revealed several astonishing security
flaws in the PlayStation 3.

Most code running on the PS3 is in the common ELF format, but is signed
with secure keys and only decrypted in an isolated SPE.

However, the SPEs do not verify that the Kernel is uncompromised so a low
level exploit can simply ask an SPE to decrypt anything it wants!

Fail0verflow Continued

Even more surprising was the next security flaw they discovered

The PS3 uses ECDSA to sign all its executables.

To be secure, ECDSA requires a random number each time a signature is
generated

Unfortunately, Sony used the same random number every time, and discovering
the root private keys was trivial.

PlayStation 3 Exploit Status

Essentially, the PlayStation 3 is completely compromised.

However, everyone involved got sued by Sony.

Fail0verflow and GeoHot are no longer involved in the scene.

New obsfucation techniques by Sony have made it more difficult to exploit the
latest kernel versions.

Still, all PS3s sold through the end of 2011 are vulnerable, and most new
kernel versions can be downgraded to an exploitable variety.

Anonymous Becomes Angry

Sony’s treatment of GeoHot and FailOverflow, as well as its victory in a lawsuit
surrounding its decision to end Linux support angered the hacktivist group
Anonymous.

They published a list of demands:

1. Sony must allow for end-user modification of the PS3,
as was available before disabling Linux

2. Sony must end any attempts to bring legal action to
alter a product they own.

3. Sony must not pursue legal action against any
collected IP address.

PSN Network Down

Shortly following Anonymous’s list of demands, a crippling assault was
launched against the PlayStation Network

It was brought down for 23 days.

Credit card information of 77 million users was revealed to the attackers

Recovery costs were close to $171 million for Sony

Anonymous claims “For Once We Didn’t Do it.”

In all likelihood, several Anon members acted alone, utilizing knowledge about
Sony’s security flaws gathered in commonly used communication channels.

